婷婷久久香蕉五月综合加勒比_91精品国产91久久久久福利_激情久久久久久久久久_欧洲人妻丰满av无码久久不卡

技術文章

Technical articles

當前位置:首頁技術文章In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

更新時間:2021-06-01點擊次數:2965

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-

        Performance Bifunctional Sensing Applications Tiantian Dai, Zanhong Deng, Xiaodong Fang,* Huadong Lu, Yong He, Junqing Chang, Shimao Wang, Nengwei Zhu, Liang Li,* and Gang Meng*

1. Introduction

       Device fabrication/integration is a longstanding challenge issue for the practical application of metal oxide nanowires with distinctive physiochemical and unique quasi-1D geometric properties.[1–3] In comparison with conventional planar nanowire devices, in which postsynthesis alignment (Langmuir–Blodgett technique,[4] contact printing,[5] and blow bubble,[6] etc.) is first employed and then electrodes are deposited, by directly growing nanowires on the selected area of solid substrates with bottom electrodes, when the tips of nanowires growing on the counter electrodes encompass each other and form stable junctions, a “bridged” nanowire device could be formed (at a large scale) in an in situ manner.[7–10] Apart from the superior benefits of facile integration of nanowire devices, bridged nanowire devices outperform conventional planar nanowire devices in several aspects. First, in situ growth ensures good electrical contact between the nanowires and the underlying electrode,[11] which plays an essential role in the performance of diverse microelectronic devices, including sensors,[12] photodetectors,[13] field emitters,[14] and energy storage devices.[15] Second, a nonplanar (or suspended) configuration not only avoids carrier scattering at the nanowire/substrate interface (leading to increased mobility)[16] but also offers a maximal exposure surface for analyte molecule adsorption (acting as a gate-all-around effect) and thus offers an additional avenue for designing highly sensitive sensors with ultralow power consumption.[7,11,17,18] As an important p-type oxide with versatile properties, CuO nanowires have promising applications in molecular sensors for harmful vapor monitoring,[19–23] photodetectors,[24] field emitting devices,[25] energy storage devices,[26] etc. Previous studies indicate that the number and density of bridged nanowires play an important role in the device performance (i.e., response and power consumption of gas sensors),[7,27] therefore, a rational synthesis methodology is essential for constructing high-performance devices. Though thermal oxidation of Cu (powder, foil, wire, film, etc.) offers a simple and catalyst-free method[28,29] for anisotropic growth of CuO nanowires, driven by oxidation induced strain between the CuO/Cu2O interfaces, as well as the fast outer diffusivity of Cu ions across the CuO/ Cu2O/Cu interfaces[29,30] and thermal oxidation of Cu powder or sputtered (patterned) Cu film dispersed/deposited onto the electrode substrate enabling the formation of bridged nanowires,[8,19] weak adhesion (due to thermal oxidation induced strain),[31] poor uniformity and uncontrolled electrical pathways hinder their promising applications. In this work, a novel methodology based on dewetting of patterned Cu films to create ordered Cu microhemisphere arrays was reported. Ag layer was proposed as a sacrificial layer to assist the dewetting of Ag/Cu/Ag films into microhemispheres at a relatively low temperature of 850 °C. Sacrificial Ag could be readily removed by vacuum evaporation due to the higher vapor pressure of Ag than Cu. In comparison with previously reported Cu powder or Cu film devices, Ag-assisted dewetting significantly shrinks the contact area of Cu/substrate to ≈1–500 µm2 (depending on size), which allows effective release of the interfacial stress during thermal oxidation of Cu[31] and contributes to firm adhesion with the underlying substrate. In addition, the position and size of hemisphere Cu arrays could be readily controlled, which plays a vital role in manipulating the structural properties (diameter, length and bridging density of nanowires) of CuO nanowires grown by thermal oxidation on diverse insulator substrates with indium tin oxide (ITO) electrodes. The in situ formed regularly bridged CuO microhemisphere nanowire arrays (RB-MNAs) devices exhibit much higher gas molecule and light responses than irregularly bridged microsphere nanowires (IB-MNs) devices, fabricated by thermal oxidation of Cu powder dispersed on ITO electrode substrates. For example, the electrical response (toward 100 ppm trimethylamine, TMA) of the RB-MNAs device is 2.8 times as high as that of the IB-MNs device at an operation temperature of 310  °C. The on/off current ratio toward (15.6  mW cm−2 ) 810  nm of the RB-MNAs device is 1.5 times as high as that of the IB-MNs device. Finally, 4 × 4 RB-MNAs devices were integrated onto a transparent ITO/quartz wafer, demonstrating the potential of the present methodology for the mass production of bridged CuO nanowire devices for future applications.

 2. Results and Discussion

        Although dewetting of uniform patterned metal films offers an approach to obtain homogeneous metal micro/nanoparticle arrays,[32,33] dewetting of patterned Cu films (prepared by using Ni shadow masks, the geometric parameters are listed in Table S1, Supporting Information) fails even at a high temperature of 850  °C. The high melting point of Cu (1085  °C) probably hinders the shrinking of the patterned Cu film at 850  °C (Figure S1, Supporting Information). Binary Cu-metal phase diagrams indicate that CuAg alloy (with 71.9 wt% Ag) possesses a low melting temperature of 779 °C,[34] which suggests that alloying with Ag may facilitate the dewetting of Cu film. Moreover, as the vapor pressure of Ag is much higher than that of Cu, Ag may be removed by appropriate thermal evaporation. Inspired by the abovementioned analysis, the patterned Cu film was sandwiched between the top and bottom Ag sacrificial layers (Ag/Cu/Ag) on a SiO2/Si or quartz substrate coated by ITO interdigital electrode (Figure 1a,e). As expected, the Ag/Cu/Ag film (size of 10.5  µm, thickness of 1.2/1.2/1.2  µm, with a Ag weight ratio of ≈70%) could be dewetted into a hemisphere shape (inset of Figure 1f) via vacuum or inert gas atmosphere annealing in a tube furnace (to prevent oxidation of metals) at 850 °C (Figure 1b,f). A noticeable decrease in the diameter of hemispheres from 8.0 ± 0.3 µm (Figure S2a, Supporting Information) to 7.0  ± 0.3 µm (Figure S2b, Supporting Information) was observed after performing vacuum evaporation (850 °C, 0.1 Pa, 1 h) (Figure 1c,g and Figure S2, Supporting Information). Moreover, the appearance of a dark condensed metal film in the low-temperature zone of the quartz tube furnace infers the evaporation of Ag, because the vapor pressure of Ag (≈2.8 × 10−1  Pa) is much higher than that of Cu (≈2.3 × 10−3  Pa) at 850  °C.[35] Thermal oxidation of ordered Cu microhemispheres at 400–450  °C allows the formation of ordered hierarchical CuO microhemisphere nanowires (Figure  1d,h). Specifically, when the nanowires grown from adjacent Cu spheres contact each other, a bridged nanowire device could be formed in an “in situ” manner. To monitor the variation of sacrificial Ag, energy dispersive spectrometry (EDS) analysis was performed (Figure 1i–l). Pristine Ag/Cu/Ag shows a higher Ag ratio (78.5  wt%) than the nominal ratio (70.3 wt%), as EDS is a surface analysis method that can only collect the generated X-ray signal in a region of ≈2 µm in depth depending on the atomic number,[36] which is less than the thickness of the Ag/ Cu/Ag film (≈3.6  µm) in Figure  1e. The substantial decrease in the Ag component in the CuAg alloy from 62.7  wt% (Figure  1j) to a negligible 0.2 wt% (Figure  1k) via vacuum evaporation suggests that most of the sacrificial Ag was evaporated. Appearance of O signal in the dewetted CuAg and Cu hemispheres (Figure  1j,k) may arise from trace oxidization by remaining oxygen in the vacuum (≈0.1 Pa) tube furnace during dewetting and evaporation process. Moreover, the tiny variation in Cu volume from the initial Cu film (Figure 1e) to the hemisphere (Figure  1g) infers that Cu was maintained during the dewetting and evaporation process. The use of a Ag sacrificiallayer allows the fabrication of ordered Cu microhemisphere arrays (Figure  1c,g) on a solid substrate and further obtains ordered hierarchical CuO microhemisphere nanowire arrays (Figure 1d,h).

 

 

 

 

 

 

 

 

以上論文信息不完整    感謝中科大的孟老師對微型探針臺的反饋!需要詳細的文獻,請到中科院一區  影響因子12    感謝所有的科研奉獻者辛勞的付出。

婷婷久久香蕉五月综合加勒比_91精品国产91久久久久福利_激情久久久久久久久久_欧洲人妻丰满av无码久久不卡

      <em id="kf52g"><noframes id="kf52g">
      <dd id="kf52g"><dfn id="kf52g"></dfn></dd>
      <em id="kf52g"></em>

      <dl id="kf52g"></dl>

      久久久免费精品视频| 亚洲视频综合在线| 另类激情亚洲| 久久亚洲高清| 亚洲美女在线看| 亚洲精品欧洲| 国产精品毛片一区二区三区| 欧美一级成年大片在线观看| 香蕉成人啪国产精品视频综合网| 国产一区二区三区四区在线观看| 久久综合久久综合久久| 女女同性女同一区二区三区91| 一区二区三区四区五区视频| 亚洲女人小视频在线观看| 狠狠操狠狠色综合网| 亚洲人成网站精品片在线观看| 欧美日韩美女| 久久国产精品99久久久久久老狼| 久久这里有精品15一区二区三区| 一区二区三区视频在线| 久久gogo国模啪啪人体图| 亚洲精选一区二区| 欧美在线观看视频在线| aaa亚洲精品一二三区| 性久久久久久久久久久久| 亚洲国产另类精品专区| 亚洲视频在线看| 亚洲黄色精品| 亚洲欧美日韩中文在线制服| 亚洲七七久久综合桃花剧情介绍| 亚洲尤物在线| 一区二区三区久久网| 欧美资源在线| 亚洲资源av| 欧美激情第一页xxx| 久久久久久一区二区三区| 欧美日韩一区国产| 免费在线观看成人av| 国产日韩成人精品| 99一区二区| 亚洲精品国精品久久99热| 欧美一区二区三区在线播放| 亚洲免费人成在线视频观看| 免费成人黄色片| 久久久人成影片一区二区三区| 欧美性做爰毛片| 亚洲欧洲日韩在线| 亚洲国产日韩欧美在线动漫| 久久精品国产亚洲高清剧情介绍| 亚洲欧洲av一区二区三区久久| 欧美18av| 亚洲高清免费| 亚洲国产成人精品女人久久久 | 一本大道久久精品懂色aⅴ| 久久综合激情| 久久香蕉国产线看观看av| 国产欧美日韩一区二区三区在线 | 国产精品99久久久久久宅男| 日韩午夜视频在线观看| 欧美福利一区二区三区| 欧美激情精品久久久久久久变态| 精品二区视频| 久久精品日产第一区二区| 久久久久免费| 精品白丝av| 久久久噜噜噜久久人人看| 欧美va天堂| 亚洲片在线观看| 欧美激情小视频| 日韩网站免费观看| 亚洲亚洲精品在线观看| 国产精品区一区| 性做久久久久久久久| 久久免费精品日本久久中文字幕| 国产日韩高清一区二区三区在线| 午夜精品999| 久久综合中文| 日韩图片一区| 欧美少妇一区| 午夜精品理论片| 免费观看成人| 99视频精品免费观看| 国产精品久久77777| 亚洲欧美日韩精品久久奇米色影视 | 欧美在线观看视频在线| 欧美电影免费| 亚洲影院色无极综合| 国产欧美日韩综合一区在线播放| 久久国产精品黑丝| 91久久精品国产91性色tv| 亚洲嫩草精品久久| 狠狠色2019综合网| 欧美日韩国产精品一卡| 午夜精品久久久久久久| 免费的成人av| 亚洲午夜未删减在线观看| 国产一区二区三区自拍| 欧美xxx在线观看| 亚洲嫩草精品久久| 亚洲国产裸拍裸体视频在线观看乱了中文 | 很黄很黄激情成人| 狠狠色丁香久久综合频道| 久久er精品视频| 一区二区免费在线视频| 欧美天天视频| 宅男精品导航| 亚洲精品乱码久久久久久久久 | 欲香欲色天天天综合和网| 欧美在线观看视频一区二区三区 | 欧美激情网站在线观看| 亚洲国产精品成人久久综合一区| 久久伊人免费视频| 欧美成人中文| 亚洲欧美久久久| 久久综合色影院| 亚洲午夜羞羞片| 国产精品久久久久高潮| 亚洲免费一在线| 亚洲国产精品va在线观看黑人| 性色av一区二区三区| 99国产精品久久久久老师| 国产有码一区二区| 国产精品久久久久久妇女6080 | 一区二区成人精品| 亚洲福利在线视频| 老司机午夜精品视频在线观看| 亚洲一区中文| 中文精品视频| 在线中文字幕一区| 亚洲精品欧美精品| 亚洲激情在线观看| 亚洲国产精品va| 亚洲第一偷拍| 樱花yy私人影院亚洲| 国产亚洲一二三区| 国产一区二区三区在线观看网站 | 欧美在线首页| 亚洲免费视频观看| 亚洲欧洲99久久| 亚洲专区一区| 性久久久久久| 久久久777| 久久影视精品| 欧美国产日本高清在线| 欧美国产欧美亚洲国产日韩mv天天看完整 | 久久国产欧美精品| 久久精品国产亚洲精品| 久久免费午夜影院| 久久综合狠狠综合久久综合88| 久久久久久久999| 久久婷婷麻豆| 欧美激情视频网站| 欧美日韩天天操| 国产精品久久久久久久午夜 | 欧美日韩精品在线| 欧美性开放视频| 国产欧美欧洲在线观看| 韩日精品在线| 亚洲精品中文字幕在线观看| 一区二区三区毛片| 羞羞漫画18久久大片| 久久午夜精品| 最新国产成人在线观看| 亚洲一区二区精品在线| 久久激情中文| 欧美精品一区二区在线播放| 欧美午夜在线视频| 精品福利免费观看| 99成人免费视频| 午夜精品久久99蜜桃的功能介绍| 久久精品成人一区二区三区| 你懂的视频欧美| 一区二区三区高清不卡| 久久精品久久综合| 欧美交受高潮1| 国产日本欧美一区二区| 亚洲精品视频在线看| 午夜精品国产精品大乳美女| 免费欧美电影| 亚洲一区二区三区视频播放| 久久亚洲综合色| 国产精品国产三级国产专播品爱网 | 日韩一级成人av| 久久久www成人免费精品| 欧美视频成人| 亚洲国产综合91精品麻豆| 欧美一区视频| 亚洲精品欧美精品| 久久婷婷丁香| 国产视频自拍一区| 亚洲视频在线视频| 蜜臀va亚洲va欧美va天堂| 亚洲夜间福利| 欧美日韩国产丝袜另类| 亚洲国产精品成人精品| 久久成人18免费网站| 日韩视频免费观看高清完整版| 久久精品国内一区二区三区| 国产伦精品一区二区三区高清| 日韩亚洲欧美成人一区|