婷婷久久香蕉五月综合加勒比_91精品国产91久久久久福利_激情久久久久久久久久_欧洲人妻丰满av无码久久不卡

技術文章

Technical articles

當前位置:首頁技術文章In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

更新時間:2021-06-01點擊次數:2965

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-

        Performance Bifunctional Sensing Applications Tiantian Dai, Zanhong Deng, Xiaodong Fang,* Huadong Lu, Yong He, Junqing Chang, Shimao Wang, Nengwei Zhu, Liang Li,* and Gang Meng*

1. Introduction

       Device fabrication/integration is a longstanding challenge issue for the practical application of metal oxide nanowires with distinctive physiochemical and unique quasi-1D geometric properties.[1–3] In comparison with conventional planar nanowire devices, in which postsynthesis alignment (Langmuir–Blodgett technique,[4] contact printing,[5] and blow bubble,[6] etc.) is first employed and then electrodes are deposited, by directly growing nanowires on the selected area of solid substrates with bottom electrodes, when the tips of nanowires growing on the counter electrodes encompass each other and form stable junctions, a “bridged” nanowire device could be formed (at a large scale) in an in situ manner.[7–10] Apart from the superior benefits of facile integration of nanowire devices, bridged nanowire devices outperform conventional planar nanowire devices in several aspects. First, in situ growth ensures good electrical contact between the nanowires and the underlying electrode,[11] which plays an essential role in the performance of diverse microelectronic devices, including sensors,[12] photodetectors,[13] field emitters,[14] and energy storage devices.[15] Second, a nonplanar (or suspended) configuration not only avoids carrier scattering at the nanowire/substrate interface (leading to increased mobility)[16] but also offers a maximal exposure surface for analyte molecule adsorption (acting as a gate-all-around effect) and thus offers an additional avenue for designing highly sensitive sensors with ultralow power consumption.[7,11,17,18] As an important p-type oxide with versatile properties, CuO nanowires have promising applications in molecular sensors for harmful vapor monitoring,[19–23] photodetectors,[24] field emitting devices,[25] energy storage devices,[26] etc. Previous studies indicate that the number and density of bridged nanowires play an important role in the device performance (i.e., response and power consumption of gas sensors),[7,27] therefore, a rational synthesis methodology is essential for constructing high-performance devices. Though thermal oxidation of Cu (powder, foil, wire, film, etc.) offers a simple and catalyst-free method[28,29] for anisotropic growth of CuO nanowires, driven by oxidation induced strain between the CuO/Cu2O interfaces, as well as the fast outer diffusivity of Cu ions across the CuO/ Cu2O/Cu interfaces[29,30] and thermal oxidation of Cu powder or sputtered (patterned) Cu film dispersed/deposited onto the electrode substrate enabling the formation of bridged nanowires,[8,19] weak adhesion (due to thermal oxidation induced strain),[31] poor uniformity and uncontrolled electrical pathways hinder their promising applications. In this work, a novel methodology based on dewetting of patterned Cu films to create ordered Cu microhemisphere arrays was reported. Ag layer was proposed as a sacrificial layer to assist the dewetting of Ag/Cu/Ag films into microhemispheres at a relatively low temperature of 850 °C. Sacrificial Ag could be readily removed by vacuum evaporation due to the higher vapor pressure of Ag than Cu. In comparison with previously reported Cu powder or Cu film devices, Ag-assisted dewetting significantly shrinks the contact area of Cu/substrate to ≈1–500 µm2 (depending on size), which allows effective release of the interfacial stress during thermal oxidation of Cu[31] and contributes to firm adhesion with the underlying substrate. In addition, the position and size of hemisphere Cu arrays could be readily controlled, which plays a vital role in manipulating the structural properties (diameter, length and bridging density of nanowires) of CuO nanowires grown by thermal oxidation on diverse insulator substrates with indium tin oxide (ITO) electrodes. The in situ formed regularly bridged CuO microhemisphere nanowire arrays (RB-MNAs) devices exhibit much higher gas molecule and light responses than irregularly bridged microsphere nanowires (IB-MNs) devices, fabricated by thermal oxidation of Cu powder dispersed on ITO electrode substrates. For example, the electrical response (toward 100 ppm trimethylamine, TMA) of the RB-MNAs device is 2.8 times as high as that of the IB-MNs device at an operation temperature of 310  °C. The on/off current ratio toward (15.6  mW cm−2 ) 810  nm of the RB-MNAs device is 1.5 times as high as that of the IB-MNs device. Finally, 4 × 4 RB-MNAs devices were integrated onto a transparent ITO/quartz wafer, demonstrating the potential of the present methodology for the mass production of bridged CuO nanowire devices for future applications.

 2. Results and Discussion

        Although dewetting of uniform patterned metal films offers an approach to obtain homogeneous metal micro/nanoparticle arrays,[32,33] dewetting of patterned Cu films (prepared by using Ni shadow masks, the geometric parameters are listed in Table S1, Supporting Information) fails even at a high temperature of 850  °C. The high melting point of Cu (1085  °C) probably hinders the shrinking of the patterned Cu film at 850  °C (Figure S1, Supporting Information). Binary Cu-metal phase diagrams indicate that CuAg alloy (with 71.9 wt% Ag) possesses a low melting temperature of 779 °C,[34] which suggests that alloying with Ag may facilitate the dewetting of Cu film. Moreover, as the vapor pressure of Ag is much higher than that of Cu, Ag may be removed by appropriate thermal evaporation. Inspired by the abovementioned analysis, the patterned Cu film was sandwiched between the top and bottom Ag sacrificial layers (Ag/Cu/Ag) on a SiO2/Si or quartz substrate coated by ITO interdigital electrode (Figure 1a,e). As expected, the Ag/Cu/Ag film (size of 10.5  µm, thickness of 1.2/1.2/1.2  µm, with a Ag weight ratio of ≈70%) could be dewetted into a hemisphere shape (inset of Figure 1f) via vacuum or inert gas atmosphere annealing in a tube furnace (to prevent oxidation of metals) at 850 °C (Figure 1b,f). A noticeable decrease in the diameter of hemispheres from 8.0 ± 0.3 µm (Figure S2a, Supporting Information) to 7.0  ± 0.3 µm (Figure S2b, Supporting Information) was observed after performing vacuum evaporation (850 °C, 0.1 Pa, 1 h) (Figure 1c,g and Figure S2, Supporting Information). Moreover, the appearance of a dark condensed metal film in the low-temperature zone of the quartz tube furnace infers the evaporation of Ag, because the vapor pressure of Ag (≈2.8 × 10−1  Pa) is much higher than that of Cu (≈2.3 × 10−3  Pa) at 850  °C.[35] Thermal oxidation of ordered Cu microhemispheres at 400–450  °C allows the formation of ordered hierarchical CuO microhemisphere nanowires (Figure  1d,h). Specifically, when the nanowires grown from adjacent Cu spheres contact each other, a bridged nanowire device could be formed in an “in situ” manner. To monitor the variation of sacrificial Ag, energy dispersive spectrometry (EDS) analysis was performed (Figure 1i–l). Pristine Ag/Cu/Ag shows a higher Ag ratio (78.5  wt%) than the nominal ratio (70.3 wt%), as EDS is a surface analysis method that can only collect the generated X-ray signal in a region of ≈2 µm in depth depending on the atomic number,[36] which is less than the thickness of the Ag/ Cu/Ag film (≈3.6  µm) in Figure  1e. The substantial decrease in the Ag component in the CuAg alloy from 62.7  wt% (Figure  1j) to a negligible 0.2 wt% (Figure  1k) via vacuum evaporation suggests that most of the sacrificial Ag was evaporated. Appearance of O signal in the dewetted CuAg and Cu hemispheres (Figure  1j,k) may arise from trace oxidization by remaining oxygen in the vacuum (≈0.1 Pa) tube furnace during dewetting and evaporation process. Moreover, the tiny variation in Cu volume from the initial Cu film (Figure 1e) to the hemisphere (Figure  1g) infers that Cu was maintained during the dewetting and evaporation process. The use of a Ag sacrificiallayer allows the fabrication of ordered Cu microhemisphere arrays (Figure  1c,g) on a solid substrate and further obtains ordered hierarchical CuO microhemisphere nanowire arrays (Figure 1d,h).

 

 

 

 

 

 

 

 

以上論文信息不完整    感謝中科大的孟老師對微型探針臺的反饋!需要詳細的文獻,請到中科院一區  影響因子12    感謝所有的科研奉獻者辛勞的付出。

婷婷久久香蕉五月综合加勒比_91精品国产91久久久久福利_激情久久久久久久久久_欧洲人妻丰满av无码久久不卡

      <em id="kf52g"><noframes id="kf52g">
      <dd id="kf52g"><dfn id="kf52g"></dfn></dd>
      <em id="kf52g"></em>

      <dl id="kf52g"></dl>

      国产一区二区三区在线观看免费| 亚洲国产高清一区二区三区| 99国产精品一区| 久久精品国产清高在天天线| 久久精品视频播放| 亚洲电影av在线| 欧美国产欧美亚洲国产日韩mv天天看完整| 亚洲国产精品欧美一二99| 一区二区国产日产| 国产视频一区欧美| 欧美激情一区二区三区成人| 欧美在线观看视频在线| 亚洲电影免费观看高清完整版| 欧美大片在线观看一区| 亚洲欧美一区二区精品久久久| 激情一区二区| 国产精品v欧美精品v日韩精品| 久久久久这里只有精品| 亚洲视频免费看| 美女精品国产| 欧美一级网站| 亚洲欧美成人一区二区三区| 亚洲人人精品| 国产一区二区欧美| 亚洲日本电影| 亚洲韩国精品一区| 国产一区二区精品| 亚洲精品社区| 欧美在线视频不卡| 欧美一二三区精品| 欧美激情一区二区三区在线视频观看 | 欧美一级网站| 夜夜嗨av一区二区三区| 欧美国产三区| 亚洲一区二区三区四区在线观看| 亚洲精品日本| 另类亚洲自拍| 久久久视频精品| 久久福利电影| av不卡在线看| 欧美国产综合视频| 国语自产精品视频在线看一大j8 | 另类激情亚洲| 亚洲欧美国产另类| 亚洲欧美日韩国产精品| 亚洲在线视频一区| 欧美极品色图| 亚洲国产黄色片| 亚洲美女福利视频网站| 一本一本大道香蕉久在线精品| 亚洲七七久久综合桃花剧情介绍| 性欧美videos另类喷潮| 一区二区三区视频在线| 亚洲综合色网站| 欧美日韩一区视频| 国产精品乱码久久久久久| 欧美系列电影免费观看| 亚洲乱码国产乱码精品精天堂| 久久躁狠狠躁夜夜爽| 亚洲国产精品成人久久综合一区| 久久久国产一区二区| 欧美激情精品久久久六区热门 | 亚洲人成免费| 日韩午夜高潮| 亚洲免费在线电影| 国产精品区一区二区三| 国外视频精品毛片| 久久综合电影| 麻豆成人在线| 欧美少妇一区二区| 韩日精品中文字幕| 免费不卡欧美自拍视频| 久久亚洲美女| 欧美日韩在线播放| 亚洲一区二区三区午夜| 久久青青草原一区二区| 久久精品首页| 亚洲第一在线综合网站| 亚洲国产精品www| 欧美日韩三级一区二区| 午夜视频精品| 国产日韩欧美精品| 最近中文字幕mv在线一区二区三区四区| 亚洲国产精品999| 欧美成人a视频| 国产日产亚洲精品| 99精品福利视频| 一区二区三区欧美成人| 国产日韩欧美日韩| 免费不卡视频| 欧美色道久久88综合亚洲精品| 久久xxxx精品视频| 欧美高清视频一区| 欧美一区二区三区精品电影| 亚洲伦伦在线| 国产亚洲欧美中文| 最新亚洲一区| 国产欧美一区二区色老头| 欧美高清视频一区二区| 欧美日在线观看| 欧美不卡三区| 久色成人在线| 黄网动漫久久久| 亚洲三级免费电影| 国内精品免费午夜毛片| 午夜精品福利一区二区三区av | 欧美三级视频在线观看| 久久精品二区三区| 欧美国产日韩一区| 久久国产手机看片| 欧美日韩在线视频一区| 欧美bbbxxxxx| 国产一区二区三区的电影 | 一区二区三区欧美| 在线日韩精品视频| 亚洲制服av| 亚洲一区二区三区久久| 欧美黑人多人双交| 久久久www| 欧美一区二区私人影院日本| 日韩五码在线| 母乳一区在线观看| 一本色道久久加勒比精品 | 国产精品视区| 99国内精品久久| 99精品欧美一区| 欧美成人午夜视频| 欧美大片一区| 在线观看日韩av| 亚洲精品小视频| 亚洲靠逼com| 欧美大片91| 亚洲高清不卡| 亚洲每日更新| 欧美日韩美女在线观看| 亚洲乱亚洲高清| 一区二区三区www| 欧美日韩视频不卡| 一区二区三区黄色| 亚洲制服av| 国产一区观看| 欧美日本在线| 亚洲综合电影一区二区三区| 欧美久久精品午夜青青大伊人| 亚洲电影下载| 日韩视频永久免费| 欧美日韩hd| 久久久久一区二区| 国产一区二区三区在线观看免费| 欧美在线亚洲在线| 老色鬼久久亚洲一区二区| 在线观看一区| 欧美福利一区二区| 99精品欧美一区| 欧美一站二站| 在线日韩av| 欧美人在线视频| 亚洲一区成人| 久久综合国产精品台湾中文娱乐网| 雨宫琴音一区二区在线| 欧美风情在线| 亚洲欧美日韩一区二区| 蜜桃久久av| 亚洲一区bb| 激情久久五月天| 欧美日韩精品欧美日韩精品一| 亚洲一区综合| 欧美黄色大片网站| 亚洲欧美日韩在线综合| 在线免费观看欧美| 欧美视频一区二区在线观看| 性欧美大战久久久久久久久| 一本大道久久a久久综合婷婷| 国产精品久久9| 日韩视频在线一区| 欧美伊人精品成人久久综合97| 亚洲国产精品99久久久久久久久| 欧美日韩国产综合视频在线观看中文| 亚洲综合首页| 亚洲国产成人av| 久久黄色影院| 一区二区三区欧美成人| 一区二区三区在线视频观看| 欧美日韩精品在线视频| 欧美在线日韩精品| 亚洲最新视频在线播放| 欧美成人精品| 亚洲欧美在线x视频| 亚洲精品国产精品乱码不99| 国产欧美日韩视频在线观看| 欧美日本一道本| 欧美成人福利视频| 久久国内精品视频| 亚洲综合第一| 亚洲深夜激情| 亚洲精品午夜精品| 欧美韩日一区二区| 欧美不卡激情三级在线观看| 欧美制服丝袜第一页| 亚洲欧美视频一区|